Production and Radiochemical Separation of the Auger Electron Emitter ¹⁴⁰Nd Frank Rösch, Jörg Brockmann, Nikolai A. Lebedev and Syed M. Qaim From the Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, Germany (F. Rösch, J. Brockmann), JINR Dubna, Laboratory of Nuclear Problems, Dubna, Russia (N.A. Lebedev), and the Institut für Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich, Germany (S.M. Qaim) Correspondence to: Prof. Dr F. Rösch, Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany. Tel: +49 6131 39 25 302. Fax: +49 6131 39 25 253. Frank.roesch@uni-mainz.de Acta Oncologica Vol. 39, No. 6, pp. 727-730, 2000 Among the Auger electron emitters, the radiolanthanide 140 Nd has some unique nuclear properties with potential for endoradiotherapeutic applications. In the present study, 140 Nd was produced via the 140 Ce(3 He,3n) nuclear process at the FZ Jülich CV28 cyclotron, irradiating CeO₂ with 3 He particles of 36 MeV primary energy. Yields of about 5 MBq 140 Nd per 140 Nd were experimentally obtained. Batch yields of > 100 MBq 140 Nd were reached. 140 Nd was separated in 75 \pm 5% radiochemical yield using a two-step process, first by extracting the bulk of the target material according to a Ce^(TV)/Nd^(III) separation, then by final ion exchange purification. Received 28 July 1999 Accepted 15 March 2000 Effective endoradiotherapy (ERT) of soft tissue tumours and small metastases with labelled complexes, particles, peptides, monoclonal antibodies or fragments requires the appropriate selection of a suitable radionuclide. Radiopharmaceuticals labelled with β^- -emitting nuclides such as 90 Y, 153 Sm or 186,188 Re are commonly used for the treatment of medium-sized tumours, but also for small tumours or metastases. Nevertheless, for small-size tumours, β^- -emitting nuclides with lower β^- -energy or nuclides emitting α -particles or Auger electrons seem to be adequate. These particles generally offer a shorter range as well as a higher linear energy transfer (LET) in tissue. Among the Auger electron emitters, the radiolanthanide ¹⁴⁰Nd has some unique nuclear properties: - The ¹⁴⁰Nd itself exclusively emits Auger electrons, not accompanied by high-energy γ -radiation. Additional photons, and Auger electrons, however, originate from the decay of its short-lived daughter ¹⁴⁰Pr. - The ¹⁴⁰Nd half-life of 3.37 d seems to be suitable for most of the usual treatments in ERT. It allows a significant tumour to blood activity ratio to be reached and it is, therefore particularly useful for the application of larger molecules with relatively long biological kinetics. - The Auger electron emission rates are 0.079 for the K-shell, and 0.94, 0.876 and 0.875 for the L-shells (L₁, - L_2 , L_3). These emission rates are thus comparable with those for the, usually, in vitro used Auger electron emitter ¹²⁵I (0.116 and 0.956, 0.921, 0.921, respectively) (1, 2). - There are groups of Auger electrons emitted per decay, creating a positively charged residual atom. On averaging the Gaussian distribution, the corresponding charges are +7 to +9 with maximum values up to +20 to +30 (3). On the whole, the therapeutic efficacy of one decay of ¹⁴⁰Nd parallels the number of the emitted Auger electrons. - The mean energy of the Auger electrons emitted amounts to 6 keV, with the dominating fraction of the LXY emission of 4 keV (compared to 17.9 keV for ¹²⁵I; (2)), thus concentrating the ¹⁴⁰Nd Auger electron radiation on several cell dimensions exclusively. Surrounding healthy tissue is effectively saved. 140 Nd produces the short-lived intermediate isotope 140 Pr ($T_{1/2}=3.39$ min). This daughter isotope decays via positron emission (51% β^+ , $E_{max}=2.3$ MeV) to the stable 140 Ce (cf. Fig. 1). While the contribution of the decay of the daughter to the total dosimetry needs to be studied in detail, it is obvious that the decay of 140 Pr offers the possibility of using positron emission tomography (PET) to determine quantitatively the uptake kinetics and radiation doses of the 140 Nd-labelled radiotherapeuticals. First 728 F. Rösch et al. Acta Oncologica 39 (2000) Fig. 1. Principal decay scheme of the Auger electron emitter 140 Nd via the short-lived positron emitter 140 Pr to stable 140 Ce. PET images of a ¹⁴⁰Nd (¹⁴⁰Pr) phantom have been acquired (4). ERT and PET are thus being bridged inherently and might allow quantitative validations as described for ⁹⁰Y (ERT) and ⁸⁶Y (PET) (5–7). As a trivalent lanthanide, ¹⁴⁰Nd should provide an excellent chemical potential for use either as ¹⁴⁰Nd ligand complexes alone or as conjugates being coupled to various compounds via bifunctional chelators. This might be of particular interest, for example, to label octreotide derivatives similar to the ¹¹¹In-, ⁶⁸Ga- or ^{90,86}Y-analogs. ## MATERIAL AND METHODS Production of 140Nd There are three principal routes to producing 140 Nd at cyclotrons, namely (i) the spallation reactions with $E_p > 100$ MeV on Ta, W or lanthanide targets, (ii) the bombardment of 141 Pr with protons or deuterons, i.e. the 141 Pr(p,2n)- or 141 Pr(d,3n)-reactions (8), and (iii) the α - or 3 He-induced nuclear reactions on 140 Ce, i.e. the 140 Ce(3 He,3n)- or 140 Ce(4 He,4n) processes. In the present study, the 140 Ce(3 He,3n) route was used. Targets consisted of 500 mg CeO₂ of high chemical purity (99.9999%, Sigma, Aldrich), which was compressed into pellets. These targets were irradiated with 3 He-particles of 36 MeV primary energy at the CV28 cyclotron of the Forschungszentrum Jülich. ## Radiochemical separation ¹⁴⁰Nd was radiochemically separated using a two-step process, first extracting the bulk of the target material according to a $Ce^{(IV)}/Nd^{(III)}$ separation, followed by final ion exchange purification. For systematic experiments, ¹⁴¹Ce and ¹⁴⁷Nd were used as tracers and were produced via the ¹⁴⁰Ce(n, γ)- and ¹⁴⁶Nd(n, γ)-reactions at the TRIGA research reactor Mainz. Fig. 2. γ -ray spectrum of ¹⁴⁰Nd (¹⁴⁰Pr). The irradiated CeO_2 was dissolved in concentrated HNO₃ containing traces of HF. The bulk of $Ce^{(IV)}$ was then extracted into n-heptane using HDEHP (Di-2-ethylhexyl-o-phosphonic acid) (9). KBrO₃ was added for complete oxidation of Ce before the next extraction cycle. The no-carrier-added (nca) ¹⁴⁰Nd was subsequently isolated from the aqueous solution and subjected to cation exchange chromatography. ¹⁴⁰Nd was selectively eluted from a small Aminex A6 column using α -hydroxyisobutyrate. #### RESULTS Through the irradiation of 500 mg CeO₂, yields of about 5 MBq ¹⁴⁰Nd per μ Ah were experimentally obtained. Using ³He beam currents of 5 μ A and irradiation periods of > 5 h, batch yields of > 100 MBq ¹⁴⁰Nd were reached. Owing to the comparatively short half-lives of the co-produced Nd isotopes ¹³⁹Nd ($T_{1/2} = 5.5$ h) and ¹⁴¹Nd ($T_{1/2} = 2.5$ h), the isotopic purity of ¹⁴⁰Nd approaches 100% at the time of its application. The γ -ray spectrum of a highly purified ¹⁴⁰Nd sample as measured at an HPGe detector is presented in Fig. 2. #### Extraction The irradiated CeO₂ was dissolved in concentrated HNO₃ containing traces of HF. After neutralization, the first extraction was performed into n-heptane/25% HDEHP. About 95% of 140 Nd and >95% Ce were extracted. Subsequently, 140 Nd was re-extracted using 8 N HNO₃ with 80% yield. KBrO₃ in a 6:1 stoichiometry with respect to the remaining amount of $\leq 10\%$ of the macroscopic Ce^(III) was added for complete oxidation of Ce and removed by extraction twice with n-heptane/25% HDEHP. About 2 ± 1 mg of the Ce target material remained in the solution, corresponding to about 0.5% of the initial target mass. The nca 140 Nd was subsequently co-precipitated from the aqueous solution as the hydroxide by adding NH₃. After centrifugation, the hydroxide was washed and finally dissoved in 0.5 ml of conc. HCl. Table 1 Comparison of Ce contaminations for the overall 140 Nd separation process for different concentrations of the eluent α -HIB applied in the ion exchange purification | 140Nd fraction considered 95% 99% | Ce contamination | | | | |-----------------------------------|------------------|--------------------|--------------|----------------| | | 0.25 M α-HIB | | 0.22 M α-HIB | | | | 0.02%
0.05% | 0.4 μg*
1.0 μg* | -
<0.01% | _*
<0.2 μg* | ^{*} Starting from overall 500 mg irradiated CeO₂ and ≤ 2 mg Ce^(III) before ion exchange purification. Fig. 3. Typical elution profiles for the separation of nca 140 Nd and about 2 μ g Ce on an Aminex A6 column (50× 3 mm). # Cation exchange chromatography The solution was transferred to a small Aminex A6 column (50×3 mm). 140 Nd was quantitatively absorbed on the resin. After washing the resin with NH₄Cl and water, 140 Nd was selectively eluted using 0.25 or 0.22 M α -hydroxyisobutyrate (α -HIB), pH 4.7. Elution fractions were collected and every drop was measured γ -spectrometrically on an HPGe detector. Optimum separation between 140 Nd and 2 ± 1 mg Ce was obtained at a concentration of 0.22 M α -HIB (cf. Fig. 3). The overall radiochemical separation yield of 140 Nd amounts to $70 \pm 5\%$. The final radiochemical purity of ^{140}Nd depends on the percentage of the ^{140}Nd elution fraction considered; i.e. the more complete the ^{140}Nd fraction, the higher the overlap with the Ce elution fraction. Even a 99% consideration of the ^{140}Nd fraction results in a contamination of <0.2 μg Ce (cf. Table). However, in the case of 95% of the ^{140}Nd fraction considered for subsequent labelling reactions, no detectable amount of Ce was found for 0.22 M $\alpha\text{-HIB}$ concentration. ## CONCLUSION The Auger electron emitter ¹⁴⁰Nd is of significant interest for the synthesis of endoradiotherapeuticals. The radiolanthanide ¹⁴⁰Nd can be produced via the ¹⁴⁰Ce(³He,3n) nuclear process in yields of about 5 MBq ¹⁴⁰Nd per μ Ah and in high radionuclidic and radiochemical purity. It is thus available for further investigation of its labelling to molecules relevant to nuclear medicine and the investigation of their endoradiotherapeutic potential. Its particular advantage is the combination of the local Auger effect for endoradiotherapy and the in situ generation of a β^+ emission for simultaneous detection using PET. The therapeutic components of the Auger effect as well as of the latter positron and 511 keV γ -radiation require further investigation. #### ACKNOWLEDGEMENTS The Mainz and Dubna authors thank the Deutsche Forschungsgemeinschaft for financial support with grants 436 RUS 113 and Ro 985/10-1. ## REFERENCES - Bambynek W, Crasemann B, Fink RW, et al. X-ray fluorescence yields, Auger, and Coster-Kronig transition probabilities. Rev Modern Phys 1972; 44: 716–67. - Firestone RB, Shirley VS, (eds). Table of isotopes. 8th ed. New York: John Wiley & Sons, Inc, 1996. - 3. Metag V, Habs D, Specht HJ. Spectroscopic properties of fission isomers. Physics Report 1980; 65: 1-41. - Rösch F, Brockmann J, Lebedev NA, Qaim SM. The Auger electron emitter ¹⁴⁰Nd: production and radiochemical separation. J Labelled Cpd Radiopharm 1999; 42 (Suppl. 1): S927–9. Abstracts from St. Louis, 13th Int Symp on Radiopharm Chem, June 27–July 1, 1999. 730 F. Rösch et al. Acta Oncologica 39 (2000) Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 1993; 34: 2222-6. - Rösch F, Herzog H, Plag C, et al. Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography. Eur J Nucl Med 1996; 23: 958–66. - 7. Rösch F, Herzog H, Brockmann J, et al. Quantitative evaluation of the in vivo stability, uptake kinetics and radiation doses - of the somatostatin receptor ligand (⁸⁶Y)DOTA-DPhe¹-Tyr³-octreotide using positron emission tomography in non-human primates. Eur J Nucl Med 1999; 26: 358–66. - Zeisler S, Becker D. Production of the ¹⁴⁰Nd/¹⁴⁰Pr radionuclide generator for biomedical studies. J Labelled Cpd Radiopharm 1999; 42 (Suppl. 1): S921–3. Abstracts from St. Louis, 13th Int Symp on Radiopharm Chem, June 27–July 1, 1999. - 9. Pierce TB, Peck PF. The extraction of the lanthanide elements from perchloric acid by di-(2-ethylhexyl) hydrogen phosphate. Analyst 1963; 88 (1044): 217–21.